10.1 【并发编程】从性能角度初探并发编程

1. 基本概念

在开始讲解理论知识之前,先过一下几个基本概念。虽然咱是进阶教程,但我也希望写得更小白,更通俗易懂。

串行:一个人在同一时间段只能干一件事,譬如吃完饭才能看电视; 并行:一个人在同一时间段可以干多件事,譬如可以边吃饭边看电视;

在Python中,多线程协程 虽然是严格上来说是串行,但却比一般的串行程序执行效率高得很。 一般的串行程序,在程序阻塞的时候,只能干等着,不能去做其他事。就好像,电视上播完正剧,进入广告时间,我们却不能去趁广告时间是吃个饭。对于程序来说,这样做显然是效率极低的,是不合理的。

当然,学完这个课程后,我们就懂得,利用广告时间去做其他事,灵活安排时间。这也是我们多线程协程 要帮我们要完成的事情,内部合理调度任务,使得程序效率最大化。

虽然 多线程协程 已经相当智能了。但还是不够高效,最高效的应该是一心多用,边看电视边吃饭边聊天。这就是我们的 多进程 才能做的事了。

为了更帮助大家更加直观的理解,在网上找到两张图,来生动形象的解释了多线程和多进程的区别。(侵删)

  • 多线程,交替执行,另一种意义上的串行。

  • 多进程,并行执行,真正意义上的并发。

http://image.iswbm.com/20201219162110.png

2. 单线程VS多线程VS多进程

文字总是苍白无力的,不如用代码直接来测试一下。

在开始之前呢,我要声明一下,本文作为并发章节的第一篇文章,只为了让你对单线程、多线程、多进程有个直观的了解。因此下面的代码中,会有多线程和多进程的的知识点,这些知识点在后面几节才会讲到,如果你看不明白也没有关系。

我的实验环境配置如下

http://image.iswbm.com/20190112205155.png

开始对比之前,首先定义四种类型的场景 - CPU计算密集型 - 磁盘IO密集型 - 网络IO密集型 - 【模拟】IO密集型

为什么是这几种场景,这和多线程 多进程的适用场景有关。结论里,我再说明。

# CPU计算密集型
def count(x=1, y=1):
    # 使程序完成150万计算
    c = 0
    while c < 500000:
        c += 1
        x += x
        y += y


# 磁盘读写IO密集型
def io_disk():
    with open("file.txt", "w") as f:
        for x in range(5000000):
            f.write("python-learning\n")


# 网络IO密集型
header = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36'}
url = "https://www.tieba.com/"

def io_request():
    try:
        webPage = requests.get(url, headers=header)
        html = webPage.text
        return
    except Exception as e:
        return {"error": e}


# 【模拟】IO密集型
def io_simulation():
    time.sleep(2)

比拼的指标,我们用时间来考量。时间耗费得越少,说明效率越高。

为了方便,使得代码看起来,更加简洁,我这里先定义是一个简单的 时间计时器 的装饰器。 如果你对装饰器还不是很了解,也没关系,你只要知道它是用于 计算函数运行时间的东西就可以了。

def timer(mode):
    def wrapper(func):
        def deco(*args, **kw):
            type = kw.setdefault('type', None)
            t1=time.time()
            func(*args, **kw)
            t2=time.time()
            cost_time = t2-t1
            print("{}-{}花费时间:{}秒".format(mode, type,cost_time))
        return deco
    return wrapper

第一步,先来看看单线程的

@timer("【单线程】")
def single_thread(func, type=""):
    for i in range(10):
              func()

# 单线程
single_thread(count, type="CPU计算密集型")
single_thread(io_disk, type="磁盘IO密集型")
single_thread(io_request,type="网络IO密集型")
single_thread(io_simulation,type="模拟IO密集型")

看看结果

【单线程】-CPU计算密集型花费时间:83.42633867263794秒
【单线程】-磁盘IO密集型花费时间:15.641993284225464秒
【单线程】-网络IO密集型花费时间:1.1397218704223633秒
【单线程】-模拟IO密集型花费时间:20.020972728729248秒

第二步,再来看看多线程的

@timer("【多线程】")
def multi_thread(func, type=""):
    thread_list = []
    for i in range(10):
        t=Thread(target=func, args=())
        thread_list.append(t)
        t.start()
    e = len(thread_list)

    while True:
        for th in thread_list:
            if not th.is_alive():
                e -= 1
        if e <= 0:
            break

# 多线程
multi_thread(count, type="CPU计算密集型")
multi_thread(io_disk, type="磁盘IO密集型")
multi_thread(io_request, type="网络IO密集型")
multi_thread(io_simulation, type="模拟IO密集型")

看看结果

【多线程】-CPU计算密集型花费时间:93.82986998558044秒
【多线程】-磁盘IO密集型花费时间:13.270896911621094秒
【多线程】-网络IO密集型花费时间:0.1828296184539795秒
【多线程】-模拟IO密集型花费时间:2.0288875102996826秒

第三步,最后来看看多进程

@timer("【多进程】")
def multi_process(func, type=""):
    process_list = []
    for x in range(10):
        p = Process(target=func, args=())
        process_list.append(p)
        p.start()
    e = process_list.__len__()

    while True:
        for pr in process_list:
            if not pr.is_alive():
                e -= 1
        if e <= 0:
            break

# 多进程
multi_process(count, type="CPU计算密集型")
multi_process(io_disk, type="磁盘IO密集型")
multi_process(io_request, type="网络IO密集型")
multi_process(io_simulation, type="模拟IO密集型")

看看结果

【多进程】-CPU计算密集型花费时间:9.082211017608643秒
【多进程】-磁盘IO密集型花费时间:1.287339448928833秒
【多进程】-网络IO密集型花费时间:0.13074755668640137秒
【多进程】-模拟IO密集型花费时间:2.0076842308044434秒

3. 性能对比成果总结

将结果汇总一下,制成表格。

http://image.iswbm.com/20190112204930.png

我们来分析下这个表格。

首先是CPU密集型,多线程以对比单线程,不仅没有优势,显然还由于要不断的加锁释放GIL全局锁,切换线程而耗费大量时间,效率低下,而多进程,由于是多个CPU同时进行计算工作,相当于十个人做一个人的作业,显然效率是成倍增长的。

然后是IO密集型,IO密集型可以是磁盘IO网络IO数据库IO等,都属于同一类,计算量很小,主要是IO等待时间的浪费。通过观察,可以发现,我们磁盘IO,网络IO的数据,多线程对比单线程也没体现出很大的优势来。这是由于我们程序的的IO任务不够繁重,所以优势不够明显。

所以我还加了一个「模拟IO密集型」,用sleep来模拟IO等待时间,就是为了体现出多线程的优势,也能让大家更加直观的理解多线程的工作过程。单线程需要每个线程都要sleep(2),10个线程就是20s,而多线程,在sleep(2)的时候,会切换到其他线程,使得10个线程同时sleep(2),最终10个线程也就只有2s.

可以得出以下几点结论 - 单线程总是最慢的,多进程总是最快的。 - 多线程适合在IO密集场景下使用,譬如爬虫,网站开发等 - 多进程适合在对CPU计算运算要求较高的场景下使用,譬如大数据分析,机器学习等 - 多进程虽然总是最快的,但是不一定是最优的选择,因为它需要CPU资源支持下才能体现优势